
Towards City-Scale Smartphone Sensing of
Potentially Unsafe Pedestrian Movements

Trisha Datta
Hillsborough Township Public School

Hillsborough, NJ, USA
tdatta@htps.us

Shubham Jain
WINLAB, Rutgers University
North Brunswick, NJ, USA

shubhamj@winlab.rutgers.edu

Marco Gruteser
WINLAB, Rutgers University
North Brunswick, NJ, USA
gruteser@winlab.rutgers.edu

Abstract—This paper proposes large scale collection of pedes-
trian movement data to promote pedestrian safety in our rapidly
developing urban environments. As a first step, we develop and
test algorithms for sensing unsafe pedestrian movements. With
distracted pedestrian fatalities on the rise, and larger than ever
use of smart devices, we propose to use the smartphone to protect
pedestrians by leveraging the in-built inertial sensors on the
smartphone. We discuss how to use these sensors for recognizing
user movements that could be potentially risky when walking on
the street, while also accounting for different phone orientations.
We introduce a simple path prediction technique and use this
to compute potential street crossings. In order to evaluate our
algorithms, we conducted walking trials and collected data from
all relevant sensors. Initial tests indicate a 90.5% success rate in
predicting that a pedestrians trajectory will cross a road.

I. INTRODUCTION

As traffic risks, especially those to pedestrians [8], continue
to increase, an urgent need arises to understand the causes
that lead to pedestrian accidents. In 2011, the number of
pedestrian fatalities rose to 4,432, and 69,000 pedestrians were
injured [4] [1]. Many of these injuries and deaths are the
result of distractions in the form of smartphones [3]. Around
85% percent of people said they had witnessed someone
using a phone while walking, and of this 85%, 42% said the
pedestrians using a phone bumped into something, and 34%
said the pedestrians using a phone put themselves in the path
of a moving vehicle [3]. More startling, however, is the fact
that more than half of all pedestrians know that texting while
walking is dangerous, but more than a quarter of pedestrians
still do so [10]. Given that they are unlikely to remedy their
behavior, there is an obvious need to develop technologies to
address this issue and enhance pedestrian safety.

One way to alleviate this problem is to collect large scale
pedestrian walking data, identify their behaviors and analyze
them. We already have the largest deployment of sensors
throughout every city - the smartphones. We suggest tapping
into the sensing power of the smartphone at a much larger
scale. The smartphones carried by pedestrians in their pockets,
are capable of sensing and collecting individual motion. This
personal sensing, when aggregated, can provide us with a
fresh perspective on pedestrian safety. Our goal is city wide
collection of such data and deploying this knowledge to create
safer streets for pedestrians.

We hope to leverage the sensors on the phone to keep track
of pedestrian movements. Since most pedestrian accidents
occur at intersections or midblock locations [6], our aim is

to identify events and movements when a person might be
entering the street at intersection or at midblock location,
which usually happens when people are trying to cross the
street. The primary challenge is to determine when people are
about to cross the street, or when they turn towards a street
to cross it. We isolated a few cases that indicate dangerous
movements: Turning toward a road, preparing to cross a road,
and passing near an intersection. To detect these events, we
need to use phone sensors to detect when a user is turning,
moving/stopping, what side of the road a user is on, and
the pedestrian’s path. We develop algorithms to sense these
movements and classify them as safe or unsafe. We used
the gyroscope and compass direction to detect turns, linear
acceleration to detect movement, GPS location to detect side
of the road, and GPS location and compass to predict a
pedestrian’s path. In addition, once we identified the relevant
sensors and behaviors, we studied how accurately we can
predict a pedestrians path and its intersection with any roads.

II. RELATED WORK

Wang et. al. [13] have developed a pedestrian safety
smartphone app called WalkSafe, which is an application that
uses a phones camera to detect if cars are coming toward
the user. Though this can be extremely valuable, it is only
helpful with the phone held in certain positions, such as when
the user is on a call. If a person is texting, which is a far
more dangerous activity from the perspective of requiring
greater engagement from the user, the camera would probably
be pointing at the ground and have no way of detecting
approaching cars. Several studies have been done that use
anisotropic magneto-resistive (AMR) magnetometers mounted
in the road to monitor traffic [12]. These studies have shown
it is possible to use a magnetometer, which phones do have,
to detect not only that a car has approached but also what
direction the car is approaching from and what kind of car
is approaching. However, magnetometers in phones are not
nearly as sensitive as AMR magnetometers, and our prelimi-
nary experiments show that phone magnetometer readings only
change significantly when the car is a few inches away, which
would be far too late to alert the pedestrian of the danger.

Gandhi et. al. [9] suggested the use of video, radar and
laser distance measurement approaches for pedestrian safety.
Fackelmeier et. al. [7] discussed an RFID based approach.
However, these approaches need significant infrastructure and
they work only on individual level, without providing the
large scale behaviour tracking. Jain et. al. [11] have shown



(a) Phone in call position. (b) Phone in flat position.

Fig. 1. Movement detection with phone in different positions.

that the GPS on smartphones can be used for pedestrian risk
detection in suburban environments. We enhance this approach
by exploring the role of inertial sensors for unsafe movement
detection.

III. TECHNICAL APPROACH

Our focus is on using the inertial sensors on the smartphone
to determine sudden unanticipated movements, which could
lead a pedestrian into a potentially dangerous situation. A
few such movements include walking outdoor for extended
periods, turning towards a street, approaching an intersection.
We approach this problem by targeting the sensors on the
smartphone and obtaining useful pedestrian context from each
of them. An additional concern would be the position or
orientation of the phone. We consider common phone positions
in our analysis. One of them, the call position, is the one
where the phone is in a position as if the user is on a call. The
seconds, the flat position, is the one where the phone is held
in a texting position.

We start by using the GPS on the smartphone to determine
a pedestrians exact location. Next, we evaluate the pedestrians
state of motion (standing, walking) using the accelerometer.
Additionally, we use the gyroscope to detect when users
change their walking path to make a turn. If the turn is towards
a street, we mark it as an unsafe turn, since it will lead them
to a moving vehicles path. In the following subsections, we
describe each of these sensors and discuss their relevance.

A. Detecting user movement

Detecting user movement is important to understand when
a user is walking for an extended period of time and is probably
on a road or sidewalk. Similarly, if we determine that a user
was moving and has now stopped, then based on their current
location, we can determine that he/she is not in potential
danger anymore. Therefore, if we can tell that a user who
has been walking for a while has stopped near an intersection,
we can predict that they are about to cross the road. In order
to detect if a person is walking or not, we use their linear
acceleration. Linear acceleration is computed by taking the
accelerometers readings (the force of acceleration along the
phones x, y, and z axes) and filtering them to exclude the
force of gravity. To find out when a person is moving, we use
linear acceleration readings and simple threshold technique.
We walked our testbed with the phone in flat and call positions
and recorded linear acceleration data. There are four values
derived from linear acceleration values that we decided to use

Fig. 2. Left turn detections using gyroscope.

as threshold to determine user movement. The first is a moving
average of the last five y-axis readings; the threshold for this
was found to be 0.21 m/s2, as in Figure 1. The next value we
used was a moving average of the last five vector values (the
vector is the square root of the sum of the squares of the x,
y, and z values); the threshold for this was found to be 0.75
m/s22.

The third value we used was a moving average of the
absolute value of differences between consecutive y-axis read-
ings (YDA); the threshold for this was determined to be
0.16 m/s2. The last value we used was a moving average of
the absolute value of differences between consecutive z-axis
readings (ZDA); the threshold we computed was 0.15 m/s2.

B. Turn detection

Turn detection is an important movement. If a pedestrian
turns towards a street, he could potentially walk off into a
moving vehicle’s path. Turn detection can be approached in
two ways,using two separate sensors. We explore both, the
gyroscope and the compass for detecting when a pedestrian
turns. We suggest combining the two, which provides a more
robust turn detection.

1) Using gyroscope: A gyroscope can detect turns very
quickly, usually whilst the person is in the middle of turn.
Looking at the moving average of the x-axis readings for right
turns, in Figure 3 and left turns 2 taken while the phone was
in the 90◦ landscape position (see Figure 4 for an explanation
of what the 90◦ landscape position is), we deduced that the
threshold for a left turn in this position was 0.4 radians/second
and that the threshold for a right turn in this position was -
0.4 radians/second. Using this, we deduced that the thresholds
for the phone in 270◦ landscape position (see Figure 4 for
an explanation of what the 270◦ landscape position is) were
the opposite values: -0.4 radians/second for left turns and 0.4
radians/second for right turns.

Looking at the moving average of the y-axis readings for
right and left turns taken while the phone was in a pocket
in Figure 3 and Figure 2, we deduced that the threshold for
a left turn in the pocket position was 0.8 radians/second and
that the threshold for a right turn in the flat position was -0.8
radians/second. Looking at the moving average of the z-axis
readings for right and left turns taken while the phone was
flat, we deduced that the threshold for a left turn in the flat



Fig. 3. Right turn detections using gyroscope.

position was 0.5 radians/second and that the threshold for a
right turn in the flat position was -0.5 radians/second.

2) Compass for turn verification: he gyroscope is very
sensitive to small movements. In order to confirm readings
from the gyroscope, we used compass (fusion of accelerometer
and magnetometer) readings. Since the compass gives an
absolute bearing, we can use it to tell which way a user is
facing and by exactly how much he/she may have turned. We
use the accelerometer and magnetometer readings as input and
compute the rotation around the phones z-axis (azimuth) with
respect to north, which essentially corresponds to compass
heading. For turn detection using the compass, we record the
initial bearing. All subsequent bearings are subtracted from
that initial bearing, and if the difference is between 85◦ and 90◦

, a turn is confirmed by the compass, and the initial bearing is
reset. The axes of the phone do not switch as the phone moves.
However, when the phone is held in different positions, we
need to remap the phones coordinate system to the real world
coordinate system. We remap the phones coordinate system by
specifying to which real world axes to map the phone x- and
y-axes. For example, when the phone is held vertically, the
phone x-axis still maps to the real world x-axis. However, the
phone y-axis now maps to the real world z-axis, and the phone
z-axis maps to the real world y-axis. Similarly, if the phone is
in the 90◦ orientation position, the phone x-axis is mapped to
the real world z-axis and the phone y-axis is mapped to x-axis
in the negative direction. The last general phone orientation,
the phone in the 270◦ orientation position, is accounted for
by mapping the phone x-axis to the real world z-axis in the
negative direction and the phone y-axis to the x-axis.

3) Combining Gyroscope and Compass: We use both the
gyroscope and the compass for turn verification. The turn
detection algorithm gets a confirmation from the gyroscope,
and for three seconds, it waits for a turn confirmation from
the compass. If and only if confirmation is received from both
turn detection methods, a turn is recorded.

C. Gravity sensor for screen orientation

When using the turn detection algorithm, it became clear
that changing the screen orientation sometimes resulted in
recording a false turn. To remedy this, we looked at gravity
sensor readings. First, we consider the false left turn recorded
when a phone switches from the 0◦ to 90◦ position. If the
phone is held in the 0◦ position vertically, gravity will be
acting positively on the y-axis. If the phone switches to the

Fig. 4. 90◦ position, 0◦ position and 270◦ position.

(a) Gravity sensor turning from 0 to
90 degrees.

(b) Gravity sensor turning from 0 to
270 degrees.

Fig. 5. Gravity sensor for screen orientation.

90◦ position, gravity will be acting positively on the x-axis.
Figure 5(a) shows x- and y-axis readings from the gravity
sensor while the phone is switched from the 0◦ to 90◦ position
and back to the 0◦ position four times. Usually, turning from 0◦

to 90◦ would result in our turn detection algorithm detecting
a left turn, which is not the desired outcome because only
the phone changed direction and not the user. Looking at the
graph, it is clear that every time the orientation switches, the
x- and y-axis values switch places. Thus, we modified the
algorithm to only verify a left turn in the 0◦ position if the
y-axis value is larger than the x-axis value at the time of
the detected turn. This means that the phone is still in the
0◦ position and not changing orientation. Similarly, if a left
turn is recorded in the 90◦ position, the application checks to
see if the y-axis readings are larger than the x-axis readings,
meaning that a screen orientation change is occurring, and if
the y-axis readings are larger, no turn is recorded We also had
to consider turning from the 0◦ to 270◦ position. Figure 5(b)
shows the readings from the gravity sensor when the phone
was turned from the 0◦ to 270◦ position and then back to
0◦ four times. This would usually result in our turn detection
algorithm detecting a right turn. When the phone goes from
0◦ to 270◦, the x-axis value always dips below -5 m/s2. Thus,
when a right turn is recorded in the 0◦ position, the application
waits 0.3 seconds to see if the x-axis value dips below -5 m/s2,
and if it does, no turn is recorded. Similarly, if a left turn is
confirmed in the 270◦ position, then the application checks to
see if the x-axis reading goes above -5 m/s2, and if it does, no
turn is recorded. Android does have a method to detect if the
phone is in the 0◦, 90◦, or 270◦ position, but the advantage of
using gravity readings rather than this method is the fact that
it detects orientation changes before the built-in method, thus
decreasing response time.

D. Path prediction and road intersection

Crossing streets is particularly dangerous. Hence, we are
also concerned with advance prediction of when a person



Fig. 6. Path prediction technique.

Fig. 7. Intersection computations using OpenStreetMap.

might cross the street. To determine if a person is about to
cross the road, we need to predict their future path. We do
this using the compass bearing, derived from magnetometer
and accelerometer data, and seeing if they have turned left or
right. We use the Haversine formula that uses the bearing, a set
distance, and current latitude/longitude coordinates to predict
future coordinates.

Figure 6 provides an illustration of the path prediction
technique, where φ is latitude, λ is longitude, θ is the bearing
clockwise from north and d is the distance away from the cur-
rent position, we can predict the latitude/longitude coordinates
of the user after he/she has moved two meters. We use two
meters because it is long enough to predict a potential crossing
with sufficient notice, but it is short enough to not return
false positives. We use OpenStreetMap data (described in more
detail later) to determine the latitude/longitude coordinates of
the road, and we use a line segment intersection algorithm to
determine if the predicted path and the road intersect at any
point. If such an intersection occurs, we predict a crossing.

E. Intersection location

We also want to identify the cases when a pedestrian is
approaching an intersection. In order to locate upcoming street
intersections, we use data from OpenStreetMap, which in an
open sourced maps database [2]. OpenStreetMap makes it
possible for users to export data within a certain geographical
region in an XML file. For our purposes, the XML file contains
nodes, which are just latitude-longitude points, and ways,
which are made up of nodes. Ways correspond to some sort
of path, like a footpath or road. To use the OpenStreetMap
XML file to find intersections, we first identify all nodes in the
selected area and compile a list of their identification numbers.
After confirming that a way is a road (by using tags in the

Fig. 8. Test path for walking.

document), we identify the nodes that make up that way. For
each node in a way, we add the identification number of the
way to a list that maps to the list of identification numbers of
the individual nodes. If at the end of the parsing one node
is found to be part of more than one way, then we have
found an intersection. Figure 7 shows intersections found from
OpenStreetMap data in a small sample region.

IV. EVALUATION

A. Data Collection

To test our algorithms ability to predict user crossings
and detect sudden unsafe movements, we walked the path
indicated in Figure 8 while holding the phone in the flat
position. In order to analyze the data we walked on a test path
in New Brunswick, New Jersey. This was a small residential
area around our research lab. While doing so, we collected
data from the phones accelerometer, magnetometer, gyroscope,
gravity sensor, linear acceleration sensor, and GPS. This data
was then analyzed offline in MATLAB.

B. Data Analysis

We used Androids methods to calculate the compass bear-
ing with every accelerometer/magnetometer update and saved
the bearing to a file coupled with the most recent GPS location
update. Next, we used OpenStreetMap data to graph the roads
in the walking path area in MATLAB. Afterwards, we used
the line segment intersection algorithm on the walking path
and the road. Lastly, we used the line segment intersection
algorithm on predicted paths and the road. We predicted a
new user path every time there was a new available set of
magnetometer and accelerometer data; we predicted this path
using the new compass bearing and the most recent GPS
location update. Because the GPS updates slower than the
accelerometer and magnetometer, we did have several compass
bearings coupled with one GPS location update. We then
parsed an OpenStreetMap XML file that contained the area
in which our walking route was located and graphed the
relevant roads. When graphing the roads (indicated by ways),
we drew line segments from node to node on the graph;
these line segments are used later in our algorithm. We first
used the line segment intersection algorithm on the walking
path latitude/longitude coordinates themselves. We considered
every GPS location update and the subsequent update; these
two GPS points served as the endpoints of our line segment.
We then used the intersection algorithm to see if the walking
path intersected with any roads provided by OpenStreetMap.



(a) Detected crossing for walking path trial one. (b) Predicted crossing for walking path trial one. (c) Predicted crossing for walking path trial two.

Fig. 9. Crossing detection evaluation for walking path trial.

Figure 9(a) shows the intersections found by the segment
intersection algorithm in one of our trials; black squares mark
the points of intersections. We then used the line segment
intersection algorithm a second time, this time in conjunction
with our path prediction algorithm. The endpoints of our
line segment were now every GPS location update and the
latitude/longitude point returned by the path prediction method.
Since several compass bearings were coupled with each GPS
location update, we did have several predicted paths originating
from one GPS update. If any intersections were predicted, we
graphed a black square at the point of intersection. Figure 9(b)
and Figure 9(c) show the predicted intersections found.

All actual crossings from the walking path GPS locations
were detected by the line segment intersection algorithm,
which is a 100% crossing detection rate, and using the path
prediction algorithm on three trials, 19/21 intersections were
predicted, which indicates a 90.5% accuracy rate. Some of the
inaccuracies were due to the slow rate of GPS update on the
smartphone.

V. DISCUSSION AND FUTURE WORK

Preliminary tests indicate success in detecting movements
useful for tracking pedestrian safety, such as when they are
turning left or right and predicting when they are about to cross
a street. We have demonstrated that data obtained from multi-
ple sensors on the smartphone is useful in predicting pedestrian
movements that could be potentially unsafe. We plan to use
our turning and stopping/starting sensing algorithms to detect
pedestrian behavior that indicates crossings even before our
path extrapolation does. Also, we plan to implement a real-time
app to perform all of the above. Our tests were conducted in a
residential area with not many high-rise buildings. Our results
might be affected in larger cities, where GPS accuracies get
worse.

When collected from a large number of pedestrians onto a
cloud server, these statistics can help identify unsafe locations,
such as intersections or road segments in a city. Maps can be
created that mark these zones, where pedestrians often indulge
in perilous movements, and hence are at higher risk. This data
can help authorities create crosswalks and impose other traffic
regulations in specific areas. This approach promotes safe
infrastructure for pedestrian safety. Moreover, such knowledge
discovery also opens space for pedestrian navigation appli-
cations. Pedestrians can be navigated through less crowded,

safer zones. If cars are also connected to the cloud, real-time
warnings could be issued to drivers about potentially unsafe
pedestrians in their path. This can be achieved via a technology
such as the DSRC [5]. This approach can also be developed
further to support safety for bicyclists. This can be particularly
important in areas with no dedicated bike lanes. On a personal
scale, this combination of location and walking behaviours can
help parents monitor their child’s walking habit, and whether
or not they cross at the designated crossing, or if they dashed
across the street.

Smartphone sensing is a powerful tool we carry in our
pockets everyday, all the time. We believe that it can be effec-
tively used for building safer environments for pedestrians.

REFERENCES

[1] Injury prevention and control motor vehicle safety. http://www.cdc.gov/
motorvehiclesafety/pedestrian safety/factsheet.html.

[2] Openstreetmap. http://www.openstreetmap.org/.
[3] Phones put pedestrians in a fog. http://www.consumerreports.org/cro/

magazine/2012/08/phones-put-pedestrians-in-a-fog/index.htm.
[4] Traffic safety facts. http://www-nrd.nhtsa.dot.gov/Pubs/811767.pdf.
[5] U.S. Department of Transportation, DSRC. http://www.its.dot.gov/

factsheets/dsrc factsheet.htm.
[6] Federal Highway Administration, Crash-Type manual for pedestrians,

April 1997.
[7] Andreas Fackelmeier, Christian Morhart, and Erwin Biebl. Dual

frequency methods for identifying hidden targets in road traffic. In
Advanced Microsystems for Automotive Applications. 2008.

[8] Transportation for America. Dangerous by design, 2011.
[9] T. Gandhi and M.M. Trivedi. Pedestrian protection systems: Issues,

survey, and challenges. Intelligent Transportation Systems, IEEE
Transactions on, 2007.

[10] Liberty Mutual Insurance. Study shows three out of five pedestrians
prioritize smartphones over safety when crossing street. http://goo.gl/
XuHtX1, June 2013.

[11] Shubham Jain, Carlo Borgiattino, Yanzhi Ren, Marco Gruteser, and
Yingying Chen. On the limits of positioning-based pedestrian risk
awareness. MARS, 2014.

[12] Lucky S. Withanawasam Michael J. Caruso. Vehicle detection and com-
pass applications using amr magnetic sensors. Sensor Expo Proceedings
1999.

[13] Tianyu Wang, Giuseppe Cardone, Antonio Corradi, Lorenzo Torresani,
and Andrew T. Campbell. Walksafe: a pedestrian safety app for mobile
phone users who walk and talk while crossing roads. In Proceedings of
the Twelfth Workshop on Mobile Computing Systems & Applications,
HotMobile ’12.


